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A problem of bending of a plate under an arbitrary load is studied. A method 
proposed by Lur’e [l J is employed, which reduces the three-dimensional prob- 
lems of the plate theory to the tw~dimensional problems using the infinite 
order differential operators of the displacements and rotations of the middle 
plane of the plate. Three stress functions are introduced, and these make it 
possible to consider the effects of the normal and tangential loads separately. 
Approximate equations are constructed using the method of homogeneous sol - 

utions 12 J. A problem of axisymmetric bending of a plate under the action of 
tangential forces is solved using the first approximation equations. 

1, Introduction of the stress functions. The equations of equili - 
brium of a thick plate bent by an arbitrary load distributed over its ends, have the form 
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Here m is the Poisson’s ratio, p is the shear modulus, WO is the deflection while uo’ 
and uo’ denote the ” rotations”’ of the middle plane of the plate. 

Let us perform a change of variables intended to separate the potential and 
vertical components of the tangential load t, and t, and the rotations uof and vor 
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tx = -4th + a2q2, ttr = --d,q, - d1q2 

240 = --al@ + a,y*, vo’ = --a2’p* - d,Y’* 

The first two equations of (1.1) can be written in the form 

--1% + %Yz = 0, a,?, + 81% = 0 

yi = M-Cp* - iVl+we - $- q1, y2 = cos hD’fP* - +- q2 

(1.2) 
(1.3) 

M* = cos hD t_ 2 (,,“_ 1, hD sin hD 

where ‘?I. and I’2 denote conjugate harmonic functions. 

Setting now ‘p* = cp + yl, Y* = Y -I- y2 and assuming that for an arb - 
itrary harmonic function y 

cos hDy = y, hD Fin hDy = 0 

we reduce the system (1.1) to the form 
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Introducing now the operator determinant of the equation (1.4). we arrive at the fol - 
lowing equations for the stress functions @i and CD,: 
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The unknown functions cp, uo’, v,,~ and w,, are determined from the formulas 

cp = M@, + M+02, we = M,cD, + M-Q2 

Ua’ = --4&W,@‘, + M+@2) + d,Y\Y, 

uo’ = -42 (M,aJ, + A!f+aq - a,Y! 

In this manner we have reduced the system (1. 1) to three separate equations 
(1.5 ) - (1.7 ) for the functions @i, a2 and Yp. Setting t, = t,, = 0 we obtain 

@i = 0 and the Eqs. (1.5) and (1.10 ) together with the expressions for cp, uO’, 
uo’ and w. will fully coincide with the equations obtained earlier [2] for the bending 

of a plate acted upon by a normal load only. 
Below we give the geometrical and the force boundary conditions for a thick 

plate. The sense of the geometrical conditions is obvious. Since the displacements 
of the points of the plate are taken in the form of solutions of the equations of the the- 
ory of elasticiity for a layer and have the form 
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it follows that the displacements u, v and w will vanish at the contour when the co- 
efficients of their expansions in powers of z are equal to zero. For a rigidly clam- 
ped edge these conditions are 

uo’ = 0, v(J’ = 0, Loo = 0, A%gl + 
nm 

2(n-1) 4 A*-% = 0 (1.11) ) 

A%; + 2 ,:” 4) dsATi-li&,' = 0, Anwo + 
2 A-6, = 0 (r&=1,2, (;n . ..) 1) 

The force boundary conditions are obtained from the principle of the minimum 
of the potential energy, and for the free edge they have the form 

G1(")n, + fW)n!, = 0, Gz(nh,, + fp& = 0 (1. II) 

lvpbz, + N,W PZ!, = 0 (a = 0,1,2. . .) 

Here GI(‘), Gzco), $P'-') , IVIto), jvz(Q) are the bending and torsional moments and trans- 
verse forces, and G;(n), G2(n), N(n), Nlln), NaCn) (n = 1,2,...) are their hyperstatic 

analogs, i. e. multimoments. The stress characteristics mentioned above are found 

from the following formulas [3 ] : 

Replacing in (1.12) 0, by 0, or xXsy and z,, by rzY we obtain the 
corresponding expressions for G,cl’) or Ii(n) and NsfnJ. The boundary conditions( X.10 ) 

and (1.11) written in terms of the stress functions @r, @‘z and Yusing the formula.(l, 8). 

2. Use of the method homogeneous solutions to construct 
the anproxima’tk equations. We use the method of homogeneous solutions to 

construct the approximate solutions. The differential operators in Eqs. (1. 5 ) - (1. 7 ) 
are written in the form of infinite products containing the roots of the following trans- 
cendental equations 

sin 2p = Zp, cos p = 0 (2.1) 

The first equation has a zero root and complex roots which can be arranged in sets of 
four roots with equal moduli, while the roots of the second equation are real and they 
all have identical moduli. Taking into account the properties of the roots of the trans- 

cendental equations (2.1) , we write the left-hand sides of (I. 5 ) - (1. ‘7 ) in the form 
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of infinite products, and we obtain 
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(D” denotes the cylindrical rigidity of the plate ). 

It should be remembered that we must solve two separate problems, the prob- 

lem of bending of the plate under the action of tangential forces described by the equ- 
ations (2.2) and (2.3 ) , and the problem of bending of the plate under the action of a 
normal load described, as shown in [2 I, by the equation (2.4) and the homogeneous 
equation (2.2). By restricting the number of roots of (2. 1) to a definite value, we 
obtain various systems of the approximate equations. Thus, considering the problem 
of bending by the tangential forces in its first approximation, we retain in (2.3 ) the 

terms corresponding to the null root in the first quarter of the complex conjugate roots 
and restrict ourselves in (2. 2) to the roots pi = a~ / 2 and Pa = 3n / 2. 

This yields 

D0A2H1(A)q = ql, 

( 

1 -+)(I -+$ 

) 
y = q2 

The total order of the system Afi, and this makes it possible for six boundary 
conditions to be fulfilled at a time. In the case of a clamped edge these conditions 
are given by (1.10 ) with n = 0 and n = 1. The force boundary conditions will 
hold for the static, as well as for the hyperstatic first order characteristics. For a free 

edge the conditions are given by the relationtions (1.11) with n = 0 and n = 1. 
The method of constructing further approximations of the order A”, AiF, etc. 

is self-evident. 

3. Axsymmetric bending of a circular plate under the 
action of tangential forces. We illustrate the theory expounded above by 

considering the problem of a circular plate radius r = a, with an axisymmetric system 

of uniformly distributed radial forces of intensity ‘/str, applied to both ends of the 

plate and thus causing the bending, At the top end the radial forces are applied from 

the edge towards the center, and in the opposite direction at the bottom end. The 

lateral surface of the plate is rigidly clamped. 
From (1.8 ) , (1.5 ) and (1.6 ) it follows that in the presence of axial symmetry 

the functions CD, and Y can be found independently of each other using the polar 

(r, 0) coordinates. The unknown quantities appearing in the problem in question are 
completely established in terms of the function @r. When t, = const .ands te = 0, 

the formulas (1.2 ) yield the value of the function of tangential load 

q1 = t,r + ho, A, = const 
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In the first approximation the problem is described by the equation 

D”AaH, (A) CD, = rt, + A, 

Its general solution can be written in the form of a sum of a particular sol - 
ution of a biharmonic function and of two complex conjugate functions satisfying the 
modified Bessel equations. Thus we obtain 

t r6 
CD1 ==&+K 

640” + C3r2 + (A, + i&) IO (91 r) + 

(A1 - iB,)I, ( alTial r) 

(the additive constant is neglected, since all the quantities sought are expressed in 

terms of the derivatives of a1 only ). 
The constants A,,, c,, A, and B, are determined from the conditions of 

rigid clamping of the lateral surface of the plate. The conditions are expressed in the 

terms of the function @r by means of the formulas (1.9 ) and (1.111, and are 

M3= I 
Z(n-1) 

[(5m - 2) D3 sin hD - mhD” cos hD] 

Mq= I 
2(m-1) f(m -I- 2) D3 sin hD - mhD4 cos hD] 

for r==a 
The numerical computations were carried out for the following data: 

m = 3, a1 + $r = 3.749 $_i1.384, n / h = S,The asymptotic formulas for the Bessel 

functions can be used already when a I h = 3 and this was done. In all computations 
performed the coefficients A, and B, were not encountered: instead we dealt with 
their values multiplied by the quantity x defined as follows: 

x= 2n: 
( 

n 

h 
ala 
h = 1 .23. 107 

The following values were obtained for the unknown constants: 

A,, = - 3.33t,h, 
t,h6 

‘4,x = 3.16.10-Q D” 

t&3 
c3 = 1.907 ( 

t,h6 
B,x = i.75.10-SD, 

and the above results were used to determine the deflection at the center of the plate 

w,(l) = --8.99t,h” / D” 

Solving the same problem in the zero approximation, when the problem is 
described by a biharmonic equation for the function Q, and only two conditions 

(UT,’ = 0 and w,, = 0) hold on the lateral surface, gives the following result: 

2a3 + 
3(4m--1) - 

m - 1 
ah2 

I 

(3.1) 
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and for a j h =: 5 wehave 

wdO) = -9.24t&* / DO (3.2) 

Comparing the results of the zero and first approximations we find, that the 
difference in the deflection is not large, but, that a more rigid clamping corresponding 
to the first approximation reduces the deflection at the center by about 3%. Computing 
the deflection of an analogously loaded plate according to the Kirchoff theory, we obtain 

1L’o = -6,94@ /‘DO (3.3) 

The value of wo defined by (3.3 f can also be obtained from (3.1) by neglect- 
ing the term containing h2. 

The difference in the values of the deflection given by the formulas (3.2) and 

(3.3 1 can be explained as follows, In the Kirchoff theory of plates ( the elementary 

theory) the effect of the tangential stresses on the bending 141 is neglected. In the 
zeroth and subsequent approximations of the proposed (multimoment 1 theory of ben - 
ding plates, the deflection is determined with the tangential stresses taken into account 
and this leads to larger values of the deflection compared with the results obtained by 

means of the elementary theory of plates. Formally, this leads to different conditions 
at the lateral surface for a clamped plate in the elementary, and in the multimoment 
theory. The Kirchoff theory of plates which disregards the deformation due to trans- 
verse shear, demands the absence of rotation of the tangent plane towards the middle 
plane of the plate at the point at which the contour is clamped. The condition that 

~0’ is equal to zero, which holds in the zeroth approximation of the multimoment 
theory, means that at the clamped edge the tangent to the middle of the linear element 

lying on the cylindrical boundary surface must remain perpendicular to the initial 

position of the middle plane. In the Love theory of thick plates [5 1 it was precisely 

such a condition that was used in analogy with the problem of a clamped beam. The 
axisymmetric problem of bending of a plate under a normal load was studied in 16 1. 
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